Some papers relevant to the determination of van der Waals forces

The emphasis in this collection is papers that provide information that can be used to determine dispersion constants. However we do include in the list papers that describe the formalism that underpins the calculations. Papers are listed chronologically in each category.

One active area in the theory of disperion interactions lies in prediciting dispersion interactions using density functional theory. This list largely ignores that research.

Organization


Fundamental Theory

Z. Eisenschitz and F. London Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften 1930 Z. Phys. 60 491.
First paper on dispersion forces

J. C. Slater and J. G. Kirkwood The Van Der Waals Forces in Gases 1931 Phys. Rev. 37 682.
Does H-H and He-He

H. Margeneau Note on the Calculation of van der Waals Forces 1931 Phys. Rev. 37 1425.
Notes that the sum rule of Thomas and Kuhn and can help to give reasonable values of C6 provided the polarizability is known.

H. Margeneau The Role of Quadrupole Forces in Van Der Waals Attractions 1931 Phys. Rev. 38 747.
Introduces the dipole-quadrupole and quadrupole-quadrupole terms

F. London The general theory of molecular forces 1937 Transactions of the Faraday Society 33 8.
Early comprehensive article on the topic

J. K. Knipp The Role of Quadrupole Forces in Van Der Waals Attractions 1938 Phys. Rev. 53 734.
The quadrupole-quadrupole 1/R5 interaction for non-S states

A. Dalgarno and J. T. Lewis The Representation of Long Range Forces by Series Expansions I: The Divergence of the Series II: The Complete Perturbation Calculation of Long Range Forces 1956 Proc. Phys. Soc. 69 57.
Discussion about the convergence of inverse power series in (1/R) of the multipole expansion of the polarization (and dispesion) interaction for H. Conclusion: the series expansion is asymptotic in nature.

P. R. Fontana Theory of Long-Range Interatomic Forces. I. Dispersion Energies between Unexcited Atoms 1961 Phys. Rev. 123 1865.

P. R. Fontana Moderately Long-Range Interatomic Forces 1961 Phys. Rev. 123 1871.

T. Y. Chang Theory of Long-Range Interatomic Forces. II. First-Order Interaction Energies in the Uncoupled Representation 1967 Rev. Mod. Phys. 39 911.

H. L. Kramer and D. R. Herschbach Combination Rules for van der Waals Force Constants 1970 J. Chem. Phys. 53 2792.
Knowledge of polarizabilities for atoms and C6 for dimers used to generate the dispersion parameters for heteronuclear dimers.

D. C. S. Allison, P. G. Burke and W. D. Robb Van der Waals coefficients for atomic systems involving non-spherical atoms 1972 J. Phys. B 5 1431.

R. Ahlrichs Convergence properties of the intermolecular force series (1/R-expansion) 1976 Theor. Chima. Acta. 41 7.

A. Koide A new expansion for dispersion forces and its application 1976 J. Phys. B 10 3173.
Shows that the multipole expansion of the VdW interaction has no convergence problems with a monemtum space treatment

R. W. Gentry and C. L. Geise Long-range interactions of ions with atoms having partially filled p subshells 1977 J. Chem. Phys. 67 2355.
Not strictly dispersion, rather deals with totGiese al interaction of an ion with an atom with a partially filled p-shell. Issues related to spin-orbit splitting addressed.

W. C. Stwalley, Y. H. Uang and G. Pichler Pure Long-Range Molecules 1978 Phys. Rev. Lett. 41 1164.

M. Movre and G. Pichler Resonance interaction and self-broadening of alkali resonance lines. I. Adiabatic potential curves 1977 J. Phys. B 10 2631

A. Koide, W. J. Meath and A. R. Allnatt Second order charge overlap effects and damping functions for isotropic atomic and molecular interactions 1981 Chem. Phys. 58 105.
Application of the momentum space treatment to H2

M. Movre and R. Beuc van der Waals interaction in excited alkali-metal dimers 1985 Phys. Rev. A 31 2957

B. Silvi and V. Chandrasekharan Dispersion coefficients for atoms in different states 1983 Mol. Phys.48 1053

R. Santra and C. H. Greene Tensorial analysis of the long-range interaction between metastable alkaline-earth-metal atoms 2003 Phys. Rev. A 67 062713.

S. M. Cybulski and T. P. Haley New approximations for calculating dispersion coefficients 2003 J. Chem. Phys. 121 7711.
Using scaled Hartree-Fock dispersion coefficients

J. Y. Zhang and J. Mitroy Long-range dispersion interactions I: formalism for two hetero-nuclear atoms 2007 Phys. Rev. A 76 022705.
General oscillator strength sum rules for states which are not spherically symmetric. Results are for heteronuclear dimers.

J. Mitroy and J. Y. Zhang Long-range dispersion interactions III: Method for two homo-nuclear atoms 2007 Phys. Rev. A 76 062703.
General oscillator strength sum rules for states which are not spherically symmetric. Results are for homonuclear dimers.

Y. H. Zhang, L. Y. Tang, X. Z. Zhang, J. Jiang and J. Mitroy Convergence of the multipole expansion of the polarization and dispersion interactions 2012 J. Chem. Phys. 136 174107.
Demonstrates that a wave function bounded to remain within a finite R has an absolutely convergent multipole expansion for distances outside the bounding region.


Reviews

H. Margenau Van der Waals Forces 1939 Rev. Mod. Phys. 11 1.

A. Dalgarno and W. D. Davidson The Calculation of Van Der Waals Interactions 1966 Adv. At. Mol. Phys. A 2 1.
Discussion of sum rule methods.

A. Dalgarno New Methods for Calculating Long-Range Intermolecular Forces, 1967 Adv. Chem. Phys. 12 143.
Discussion of sum rule methods.

T. Y. Chang Moderately Long Range Interatomic Forces 1967 Rev. Mod. Phys. 39 911.
Long range interatomic forces. Deals with the different coupling schemes for different energy regimes.

T. M. Miller and B. Bederson The Calculation of Van Der Waals Interactions 1977 Adv. At. Mol. Phys. 13 1.
Predominantly a polarizability review

T. M. Miller and B. Bederson Recent Developments in the Measurement of Static Electric Dipole Polarizabilities 2005 Adv. At. Mol. Phys. 51 343.
Predominantly a polarizability review covering results in the 1977 - 2005 time period

K. M. Jones, E. Tiesinga, P. D. Lett and P. S. Julienne Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering 2006 Rev. Mod. Phys. 78 483

N. Bouloufa, A. Crubellier and O. Dulieu Photoassociative molecular spectroscopy for atomic radiative lifetimes 2009 Phys. Scr. 78 014014
Paper discussing high precision measurements of atomic lifetimes. Emphasis on photo-association measurements which give C3 coefficient for the homonuclear systems.

J. Mitroy, M. S. Safronova and C. W. Clark Polarizabilities of atoms and ions 2010 J. Phys. B 43 202001.
Predominantly a polarizability review

U. Hohm Experimental static dipole-dipole polarizabilities of molecules 2013 J. Molec. Structure 1054 282.
Polarizability compilation


Casimir-Polder

H. B. Casimir and D. Polder The Influence of Retardation on the London-van der Waals Forces 1948 Phys. Rev. 73 360

M. Karplus, Kolker, H. J. Van der Waals Forces in Atoms and Molecules 1964 J. Chem. Phys. 41 3955
Uses dynamic polarizability to generate Cn coefficients

K. T. Tang Dynamic Polarizabilities and van der Waals Coefficients 1969 Phys. Rev. 177 108

P. Langhoff and M. Karplus Padé Approximants for Two-and Three-Body Dipole Dispersion Interactions 1970 J. Chem. Phys. 53 233
Uses dynamic polarizability to generate Cn coefficients

P. Langhoff, R. G. Gordon and M. Karplus Comparisons of Dispersion Force Bounding Methods with Applications to Anisotropic Interactions 1971 J. Chem. Phys. 55 2126

K. T. Tang Upper and lower bounds of two- and three-body dipole, quadrupole, and octupole van der Waals coefficients for hydrogen, noble gas, and alkali atom interactions 1976 Phys. Rev. 64 3063


Three-body

B. M. Axilrod and E. Teller Interaction of the van der Waals Type Between Three Atoms 1943 J. Chem. Phys. 11 299.
Original paper for the 3-body non-additive dispersion potential

J. S. Dahler and J. O Hirschfelder Long Range Intermolecular Forcees 1956 J. Chem. Phys. 25 986.
Mainly deals with various cases for 3-body systems

A. Dalgarno and G. Victor Long range three-body forces between helium and hydrogen atoms 1966 Mol. Phys. 10 333

S. A. C. McDowell, A. Kumar and W. J. Meath On the anisotropy of the triple-dipole dispersion energy for interactions involving linear molecules 1996 Mol. Phys. 87 845

L. Y. Tang, Z. C. Yan, T. Y. Shi, J. F. Babb and J. Mitroy The long-range non-additive dispersion interactions for the rare gases, alkali and alkaline-earth atoms 2012 J. Chem. Phys. 136 104104.
Very extensive tabulations of the three-body coefficients are reported in the supplementary data


Higher order

J. Butka and W. J. Meath On the evaluation of high-order interaction energies using pseudo state methods 1974 Mol. Phys. 24 1235.
Includes expressions for the 3rd and 4th order terms.

V. D. Ovsiannikov, A. V. Guilyarovski, and O. Y. Lopatko Higher order effects in dispersion interaction of atoms 1988 Mol. Phys. 61 111.
Some 3rd and 4th order coefficients given for the hydrogen dimer.

Z. C. Yan and A. Dalgarno Regular approach to generate van der Waals coefficients to arbitrary orders. 1999 Mol. Phys. 96 863
Calculation of third order terms up to C15

J. Mitroy and M. W. J. Bromley The higher order Cn dispersion coefficients for the alkali metals 2005 Phys. Rev. A 71 042701.
Gives C12, C14 and C16 including 3rd and 4th order terms

V. D. Ovsiannikov and J. Mitroy Regular approach to generate van der Waals coefficients to arbitrary orders. 2006 J.Phys.B 39 159-187.
Calculation goes up to 10th order of perturbation theory and includes terms up to C30

M. Przybytek and B. Jeziorski Higher dispersion coefficients for the interaction of helium atoms . 2008 Chem. Phys. Lett. 459 183. (Erratum 463 435)
Calculation goes up to 4th order of perturbation theory and includes terms up to C16

L. Y. Tang, J. Y. Zhang, Z. C. Yan, T. Y. Shi and J. Mitroy The third-order van der Waals interaction 2011 Phys. Rev. A 84 052502.
Treats the case where one of the atoms is not in a spherically symmetric state. Previous treatments of 3rd-order VdW interactions have been confined to the case where both atoms are in a spherically symmetric state.


Retardation

M. J. Jamieson and G. . F. Drake and A. Dalgarno Retarded dipole-dipole dispersion interaction potential for helium 1995 Phys. Rev. A 71 3358.


Data Tabulations

Small systems

L. Pauling and J. Y. Beach The van der Waals Interaction of Hydrogen Atoms 1935 Phys. Rev. 47 686.
C6 and C8 correct to six digits. C10 incorrect since dipole-octupole term not considered.

A. J. Thakkar Higher dispersion coefficients: Accurate values for hydrogen atoms and simple estimates for other systems 1988 J. Chem. Phys. Rev. 89 2092.

D. M. Bishop and J. Pipin Dipole, quadrupole, octupole, and dipole–octupole polarizabilities at real and imaginary frequencies for H, He, and H2 and the dispersion-energy coefficients for interactions between them 1993 Int. J. Quantum Chem. A 45 349.

Z. C. Yan, J. F. Babb, A. Dalgarno and G. W. F. Drake Variational calculations of dispersion coefficients for interactions among H, He, and Li atoms 1996 Phys. Rev. A 133 104306.
Very precise calculations of C6 , C8 and C10 for all possible combinations of the ground states for these atoms. Does not include finite mass or relativistic effects

L. Y. Tang, J. Y. Zhang, Z. C. Yan, T. Y. Shi, J. Mitroy Long-range dispersion coefficients for Li, Li+ and Be^+ interacting with the rare gases 2010 J. Chem. Phys. 133 104306.

J. Y Zhang, J. Mitroy Z. C. Yan, J. F. Babb, H. R. Sadeghpour and U. Schwingenschlog Long Range Interactions of excited He atoms with the alkaline earth atoms Mg, Ca and Sr 2013 J. Chem. Phys. 138 134317.


Noble gases

A. E. Kingston and A. Dalgarno Van der Waals Forces for Hydrogen and the Inert Gases 1961 Proc. Phys. Soc. A 78 607

A. E. Kingston Van der Waals Forces for the Inert Gases 1964 Phys. Rev 135 1018

A. Kumar and W. J. Meath Pseudo-spectral dipole oscillator strengths and dipole-dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He, Ne, Ar, Kr and Xe 1985 Mol. Phys. 54 823
Pseudo-oscillator strength distributions for these systems. Only dipole transitions.

A. Kumar and W. J. Meath Integrated dipole oscillator strengths and dipole properties for Ne, Ar, Kr, Xe, HF, HCl, and HBr 1985 Can. J. Chem. 63 1616
Pseudo-oscillator strength distributions for these systems. Only dipole transitions.

J. M. Standard and P. R. Certain Bounds to two- and three-body long-range interaction coefficients for S-state atoms 1985 J. Chem. Phys. 83 3002.
The C6, C8 and C10 dispersion parameters for the noble gases, alkalis and alkaline-earth atoms. The data tabulated in this paper has largely been superseded by later works.

A. J. Thakkar, H. Hettema and P. S. Wormer Ab initio dispersion coefficients for interactions involving rare-gas atoms 1992 J. Chem. Phys. 97 3252.

C. Hattig and B. A. Hess TDMP2 Calculation of Dynamic Multipole Polarizabilities and Dispersion Coefficients of the Noble Gases Ar, Kr, Xe, and Rn 1996 J. Phys. Chem. 100 6243.

M. J. Jamieson, G. W. F. Drake and A. Dalgarno Retarded dipole-dipole dispersion interaction potential for helium 1995 Phys. Rev. A 51 3358

J. Mitroy and M. W. J. Bromley Dispersion coefficients for H and He interactions with alkali and alkaline-earth atoms 2003 Phys. Rev. A 68 062710. Errata 2005 Phys. Rev. A 71 019903.
The C6 , C8 and C10 dispersion parameters are given. All atoms in their ground states.

J. Y. Zhang and J. Mitroy Long rang dispersion interactions II: alkali and rare gas atoms. 2007 Phys. Rev. A 76 032706.
The paper also C6, C8 and C10 dispersion parameters for the alkalis and alkaline-earth atoms. Only ground states are considerd.

A. Derevianko, S. G. Porsev and J. F. Babb Electric dipole polarizabilities at imaginary frequencies for the alkali-metal, alkaline-earth, and inert gas atoms 2010 At. Data. Nucl. Data Tables 96 323.
Dynamic dipole (only) polarizabilities for noble gases, alkalis and alkaline-earth. The tabulations are done on a 50 point grid.

A. Kumar and A. J. Thakkar Dipole oscillator strength distributions with improved high-energy behavior: Dipole sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited 2010 J. Chem. Phys. 132 073401
Pseudo-oscillator strength distributions for these systems. Only dipole transitions.

Alkali Atoms

A. Dalgarno and W. D. Davison Long-range interactions of alkali metals 1967 Mol. Phys. 13 479

B. Bussery and M. Aubert-Frecon Calculated long-range electrostatic and dispersion interactions of M( ns2S) with M( ns2S) or M( np 2P) for M = Li and Na when neglecting spin—orbit effects 1984 Chem. Phys. Lett. 105 64

B. Bussery and M. Aubert-Frecon Multipolar long-range electrostatic, dispersion, and induction energy terms for the interactions between two identical alkali atoms Li, Na, K, Rb, and Cs in various electronic states 1985 J. Chem. Phys. 82 3224.

B. Bussery, M. Aubert-Frecon and M. Saute Calculated long-range ground and excited molecular states of alkali hydride molecules 1986 Chem. Phys. 109 39
Gives C6,8,10

M. Marinescu, H. R. Sadeghpour and A. Dalagarno Disperions coefficients for alkali-metal dimers 1994 Phys. Rev. A 49 982.
C6, C8 and C10 coefficients for all the alkali metals dimers. Highly cited paper which does not have a seperate treatment of the oscillator strength distributions for the core and valence electrons. This slightly degrades the accuracy and later work by other groups should be preferred.

M. Marinescu, and A. Dalagarno Dispersion forces and long-range electronic transition dipole moments of alkali-metal dimer excited states 1995 Phys. Rev. A 52 311.
C6, C8 and C10 coefficients for the alkali homo-nuclear dimers with one of the atoms being in an excited state. Does not have a seperate treatment of the oscillator strength distributions for the core and valence electrons. This slightly degrades the accuracy and later work by other groups should be preferred.

M. Marinescu, and A. Dalagarno Dispersion coefficients for the nP-nP asymptote of homonuclear alkali-metal dimers 1997 Phys. Rev. A 56 4764.
C5, C6 and C8 coefficients for the alkali hetero-nuclear dimers with both of the atoms being in an excited state. Does not have a seperate treatment of the oscillator strength distributions for the core and valence electrons. This slightly degrades the accuracy and later work by other groups should be preferred.

M. Marinescu, and A. Dalagarno Long-range potentials for two-species alkali-metal atoms s 1999 Phys. Rev. A 59 390.
C6, C8 and C10 coefficients for the alkali hetero-nuclear dimers with one of the atoms being in an excited state. Does not have a seperate treatment of the oscillator strength distributions for the core and valence electrons. This slightly degrades the accuracy and later work by other groups should be preferred.

P. Kharchenko, J. F. Babb and A. Dalgarno Long-range interactions of sodium atoms 1997 Phys. Rev. A 55 3566
Only deals with sodium. But also gives three-body and atom-wall coefficients.

A. Derevianko, J. F. Babb and A. Dalgarno High-precision calculations of van der Waals coefficients for heteronuclear alkali-metal dimers 2001 Phys. Rev. A 63 052704
Gives C6 for all alkali atoms from Li to Fr. Uncertainty estimates given.

N. Geum, G. H. Jeung, A. Derevianko, R. Cote and A. Dalgarno Interaction potentials of LiH, NaH, KH, RbH, and CsH 2001 J. Chem. Phys. 115 5984

S. G. Porsev and A. Derevianko Accurate relativistic many-body calculations of van der Waals coefficients C8 and C10 for alkali-metal dimers 2003 J. Chem. Phys. 119 844

J. Mitroy and M.W.J.Bromley Semi-empirical calculation of van der Waals coefficients for alkali and alkaline-earth atoms 2003 Phys. Rev. A 68 052714. Errata 2005 Phys. Rev. A 71 019902.
The C6 , C8 and C10 dispersion parameters for the alkalis and alkaline-earth atoms. Only ground states are considered.

J. Mitroy and M.W.J.Bromley Dispersion coefficients for H and He interactions with alkali and alkaline-earth atoms 2003 Phys. Rev. A 68 062710. Errata 2005 Phys. Rev. A 71 019903.
Gives C6, C8 and C10 coefficients for the alkali and alkaline-earth atoms with H and He. All atoms in ground states.

C. Zhu, A. Dalgarno, S. G. Porsev, and A. Derevianko Dipole polarizabilities of excited alkali-metal atoms and long-range interactions of ground- and excited-state alkali-metal atoms with helium atoms 2004 Phys. Rev. A 70 032722

J. Y. Zhang, J. Mitroy and M. W. J. Bromley Dispersion coefficients of the excited states of lithium atoms 2007 Phys. Rev. A 75 042509.
C6, C8 and C10 coefficients for the lithium homo-nuclear dimers. One or both of the atoms can be in an excited state.

J. Jiang, Y. J. Cheng, and J. Mitroy Long-range interactions between alkali and alkaline-earth atoms. 2013 J. Phys. B 46 125004.
Covers the alkali-alkaline case. Heaviest atoms considered are Rb and Sr. One of the atoms can be in an excited state.


Alkaline-earth Atoms

J. Mitroy and M.W.J.Bromley : Semi-empirical calculation of van der Waals coefficients for alkali and alkaline-earth atoms 2003 Phys. Rev. A 68 052714. Errata 2005 Phys. Rev. A 71 019902.
The C6, C8 and C10 dispersion parameters for the alkalis and alkaline-earth atoms. Only ground states are considered.

S. G. Porsev and A. Derevianko High-accuracy calculations of dipole, quadrupole, and octupole electric dynamic polarizabilities and van der Waals coefficients C6, C8, and C10 for alkaline-earth atoms 2006 Journal of Experimental and Theoretical Physics 102 195.
Used Casimir-pOlder relation. Dispersion coefficients only given for homo-nuclear dimers.

J. Mitroy and J. Y. Zhang Long-range dispersion interactions of the low lying states of Mg with H, He, Ne, Ar, Kr and Xe 2008 Mol. Phys. 106 127-132.

J. Mitroy and J. Y. Zhang Properties and long range interactions of the Ca atom 2008 J. Chem. Phys. 128 134305.
C6, C8 and C10 coefficients are given. Interactions of the lowest 7 states of calcium with H, the Ca ground state and the rare gases.

J. Mitroy and J. Y. Zhang Dispersion and polarization interactions of the strontium atom 2010 Mol. Phys. 108 1999-2006.
C6, C8 and C10 coefficients are given. Interactions of the lowest 3 states of strontium with H, the Sr ground state and the rare gases.

J. Jiang, Y. J. Cheng, and J. Mitroy Long-range interactions between alkali and alkaline-earth atoms. 2013 J. Phys. B 46 125004.
Dispersion coefficients involving one alkali atom and one alkaline-earth atom.Either of the atoms can be in an excited state.


Other systems

S. Jonsell, A Saenz, P. Froelich, R. C. Forrey, R. Cote, and A. Dalgarno Dipole Polarizability of the Neutral Carbon Atom and the Dipole-Dipole Interaction between Carbon Atoms 1972 Phys. Rev. A 2 516.
Gives C6 for Carbon dimer

V. Staemmler and R. Jaquet CEPA calculations of potential energy surfaces for open-shell systems.. III. Van der Waals interaction between O( 3P) and He( 1S) 1985 Chem. Phys. 92 141

P. K. Mukherjee and Kimio Ohno Dynamic polarizabilities and Rydberg states of silicon, phosphorous, and sulfur 1988 Phys. Rev. A40 1753.

M. Rerat, B. Bussery and M. Frecon, Dipole Polarizabilities of Li, C, and O and Long-Range Coefficients for Various Molecular States of Li 2, CO, and O 2 1997 J. Molec. Spectrosc. 182 260
\

C. Pouchon, M. Rerat and G. Maroulis Frequency-dependent dipole and quadrupole polarizabilities for the ground ? state of boron 1997 J. Phys. B 30 167.
\

S. Jonsell, A Saenz, P. Froelich, R. C. Forrey, R. Côté, and A. Dalgarno Long-range interactions between two 2s excited hydrogen atoms 2002 Phys. Rev. A 65 042501
\

J. Mitroy and M. W. J.Bromley Van der Waals coefficients for Ps-atom interactions 2003 Phys. Rev. A 68 035201.

P. Zhang, V. Kharchenko and A. Dalgarno Thermalization of Suprathermal N(4S) atoms in He and Ar gases. 2006 Mol. Phys. 105 1487.

X. Chu, A. Dalgarno and G. C. Groenenboom Dynamic polarizabilities of rare-earth-metal atoms and dispersion coefficients for their interaction with helium atoms 2005 Phys. Rev. A 72 032703.

X. Chu, A. Dalgarno and G. C. Groenenboom Dynamic polarizabilities of rare-earth-metal atoms and dispersion coefficients for their interaction with helium atoms 2006 Mol. Phys. 105 1487.

J. S. Cohen and A. Derevianko Long-range forces between two excited mercury atoms and associative ionization 2007 Phys. Rev. A 76 012706

J. Y. Zhang, J. Mitroy, H. R. Sadeghpour and M. W. J Bromley Long range interactions of the copper and silver atoms with helium and the rare gases 2008 Phys. Rev. A 78 062710.
Coefficients for the low lying states of Copper and Silver with hydrogen and the rare gases

O. Zatsarinny, K. Bartschat, J. Y. Zhang and J. Mitroy Long range interactions of the chlorine atom 2009 Mol. Phys. 107 2387-2393.
Coefficients given for the clorine dimer and the interactions of clorine with the rare gases and hydrogen.

O. Zatsarinny, K. Bartschat, J. Y. Zhang and J. Mitroy Multipole polarizabilities and long range interactions of the fluorine atom 2009 J. Chem. Phys. 130 124310.
Coefficients given for the fluorine dimer and the interactions of fluorine with the rare gases and hydrogen.

L. W. Qiao, P. Li and K. T. Tang Dynamic polarizabilities of Zn and Cd and dispersion coefficients involving group 12 atoms 2012 J. Chem. Phys. 137 084309.
Dynamic dipole polarizabilities for Zn and Cd.

M. S. Safronova, S. G. Porsev and C. W. Clark Ytterbium in Quantum Gases and Atomic Clocks: van der Waals Interactions and Blackbody Shifts 2012 Phys. Rev. Lett. 109 230802.
Used Casimir-Polder relation. Gives C6, for dimer, and alkali and alkaline-earth combinations.

S. G. Porsev, M. S. Safronova, A. Derevianko and C. W. Clark Relativistic many-body calculations of van der Waals coefficients for Yb-Li and Yb-Rb dimers 2012 Phys. Rev. A .
Used Casimir-Polder relation. Gives C6 and C8. Coefficients also given for the first excited state, including the triplet of each dimer.


Ions

J. Mitroy and J. Y. Zhang Long-range interactions of the Ca+ and Mg+ ions 2008 Eur. Phys. J. D 46 415-424.
Dispersion coeffiecent for the lowest 4-5 states of these two ions with the rare gases.

J. Mitroy, J. Y. Zhang and M. W. J. Bromley Long-range interactions of the Sr+ ion 2008 Phys. Rev. A 77 032512.
Dispersion coeffiecent for the lowest 4-5 states of the strontium ion with the rare gases.


Some simple molecules

A. Dalgarno, I. H. Morrison and R. M. Pengelly Long-range interactions between atoms and molecules 1967 Int. J. Quantum Chem. 1 161
Used pseudo-oscillator strengths for He, Ne, A, Kr, Xe, H2, N2 and CH4. Does C6 and C9 .

G. D. Zeiss and W. J. Meath Dispersion energy constants C6(A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O 1977 Mol. Phys. 33 1155
Used pseudo-oscillator strengths to get C6 .

M. S. Boweres, K. T. Tang and P. J. Toennies The anisotropic potentials of He-N2, Ne-N2, and Ar-N2. 1988 J. Chem. Phys. 88 5465

W. J. Meath and A. Kumar Reliable isotropic and anisotropic dipolar dispersion energies, evaluated using constrained dipole oscillator strength techniques, with application to interactions involving H2, N2, and the rare gases 1990 Int. J. Quant, Chem. 38 501
Pseudo-oscillator strength distributions for these systems. Only dipole transitions.

H. Hettema, P. S. Wormer and A. J. Thakkar Intramolecular bond length dependence of the anisotropic dispersion coefficients for interactions of rare gas atoms with N2, CO, Cl2, HCl and HBr 1993 Mol. Phys. 80 533

J. F. Babb Effective Oscillator Strengths and Transition Energies for the Hydrogen Molecular Ion. 1994 Mol. Phys. 81 17

A. Kumar and W. J. Meath Reliable isotropic and anisotropic dipole properties, and dipolar dispersion energy coefficients, for CO evaluated using constrained dipole oscillator strength techniques 1994 Chem. Phys. 189 467.
Dipole pseudo-oscillator strength distributions for CO.

A. Kumar, W. J. Meath, P. Bundgen and A. T. Thakkar Reliable anisotropic dipole properties, and dispersion energy coefficients, for O2 evaluated using constrained dipole oscillator strength techniques 1996 J. Chem. Phys. 105 4927
Dipole pseudo-oscillator strength distributions for O2.

F. Visser, P. E. S. Wormer and W. P. J. H. Jacobs The nonempirical calculation of second-order molecular properties by means of effective states. III. Correlated dynamic polarizabilities and dispersion coefficients for He, Ne, H2, N2, and O2 1985 J. Chem. Phys. 82 3753

T. N. Olney, N. M. Cann, G. Cooper and C. Brion Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules. 1997 Chem. Phys. 223 59
Dipole oscillator strength distributions for many systems

C. Zhu, A. Dalgarno and A. Derevianko van der Waals interactions between molecular hydrogen and alkali-metal atoms 2002 Phys. Rev. A 65 034708

D. M. Bishop and L. M. Cheng Dynamic dipole polarizability of H2 and HeH+ 1980 J. Chem. Phys. 72 5125


Applications

R. J. LeRoy and R. B. Bernstein Dissociation energies and long-range potentials of diatomic molecules from vibrational spacings: The halogens 1971 J. Molec. Spect. 37 109
The importance of knowing the dispersion coefficients when trying to determine dissociation energies

J. Comparat Improved LeRoy-Bernstein near-dissociation expansion formula, and prospect for photoassociation spectroscopy 2004 J. Chem. Phys. 120 1318
The importance of knowing the dispersion coefficients when trying to determine dissociation energies

R. J. LeRoy and Y. Huang and C. Jary An accurate analytic potential function for ground-state N2 from a direct-potential-fit analysis of spectroscopic data 2006 J. Chem. Phys. 125 164310
Gives C6 and C8


Pressure shifts

S. Ray. J. D. Lyons and T. P. Das Hyperfine Pressure Shift and van der Waals Interaction. IV. Hydrogen-Helium System 1968 Phys. Rev. A 174 104

W. D. Davidson Long-range interactions and the hyperfine pressure shift: Hydrogen in an inert gas 1969 J. Phys. B 2 1110

B. K. Rao. D. Ikenberry and T. P. Das Hyperfine Pressure Shift and van der Waals Interaction. IV. Hydrogen-Rare-Gas Systems 1970 Phys. Rev. A 2 1411

E. Bernabeu and J. M. Alvarez Shift and broadening of hyperfine components of the first doublet of cesium perturbed by foreign gases 1980 Phys. Rev. A 22 2060

W. G. Greenwood and K. T. Tang Dipole, quadrupole, and octupole terms in the long-range hyperfine frequency shift for hydrogen in the presence of inert gases 1987 J. Chem. Phys. 86 3539

A. Andalkar and R. B. Warrington High-resolution measurement of the pressure broadening and shift of the Cs D1 and D2 lines by N2 and He buffer gases 2002 Phys. Rev. A 65 032708


Potential curve analysis

R. J. LeRoy and R. B. Bernstein Dissociation Energy and Long.Range Potential of Diatomic Molecules from Vibrational Spacings of Higher Levels 1970 J. Chem. Phys. 52 3869.
The importance of knowing the dispersion coefficients when trying to determine dissociation energies

R. J. LeRoy and R. B. Bernstein Dissociation energies of diatomic moleculles from vibrational spacings of higher levels: application to the halogens 1970 Chem. Phys. Lett. 5 42.
The importance of knowing the dispersion coefficients when trying to determine dissociation energies

W. C. Stwalley, Y. H. Uang and G. Pichler Pure Long-Range Molecules 1978 Phys. Rev. Lett. 41 1164.

W. T. Zemke and W. C. Stawlley Analysis of long-range dispersion and exchange interactions of two lithium atoms 1993 J. Phys. Chem. 97 2053.
Spectral analysis of data for Lithium dimer

B. Ji, C. C. Tsai, L. Li, T. J. Whang., A. M. Lyyra., H. Wang., J. T. Bahns., W. C. Stwalley and R. J. LeRoy Determination of the long-range potential and dissociation energy of the 1 3Delta g state of Na2 1995 J. Chem. Phys. 103 7240.

W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. Stoof and R. G. Hulet Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium 1995 Phys. Rev. A 51 R871.

H. Wang, P. L. Gould, W. C. Stwalley Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. I. The 0g- pure long-range state and the long-range potential constants 1997 J. Chem. Phys. 106 7889.

J.Y. Seto, R.J. Le Roy, J. Verges and C. Amiot, Direct Potential Fit Analysis of the X-State of Rb2: Nothing Else Will Do 2000 J. Chem. Phys. Chem. A 113 3067.
Spectral analysis of this molecule

C. Cheng, V. Vuletic, A. J. Kerman and S. Chu High Resolution Feshbach Spectroscopy of Cesium 2000 Phys. Rev. Lett. 85 2717.
Potential parameters for Cesium

E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen and B. J. Verhaar Interisotope Determination of Ultracold Rubidium Interactions from Three High-Precision Experiments 2002 Phys. Rev. Lett 88 093201

S. B. Nagel, P. G. Mickelson, A. D. Saenz, Y. N. Martinez, Y. C. Chen, T. C. Killian, O. Pellegrini, R. Cote. Photoassociative Spectroscopy at Long Range in Ultracold Strontium 2005 Phys. Rev. Lett. 94 083004.

F. Vogt, C. Grain, T. Nazarova, U. Sterr, F. Riehle, C. Lisdat and E. Tiemann Determination of the calcium ground state scattering length by photoassociation spectroscopy at large detunings 2007 Eur. Phys. J. D 44 73.

A. Shayesteh, R. D. E. Henderson, R. J. Le Roy and P. F. Bernath Ground State Potential Energy Curve and Dissociation Energy of MgH 2007 J. Phys. Chem. A 111 124959.
Spectral analysis of this molecule

R. J. Le Roy, N. S. Dattani, J. A. Coxon, A. J. Ross, P. Crozet and C. Linton Accurate analytic potentials for Li2(X 1g+) and Li2(A 1+) from 2 to 90 A, and the radiative lifetime of Li(2p) 2009 J. Chem. Phys. 131 204309.
Spectral analysis of lithium dimer

N. S. Dattani and R. J. Le Roy A DPF Data Analysis Yields Acurate Analytic Potentials for Li2(a 3Sigmau+) and Li2(1 3Sigmag+) That Incorporate 3-State Mixing Near the 1 3Sigmag+)-state Asymptote 2011 J. Molec. Spectros. 267 199.
Spectral analysis of lithium dimer

H. Knockel, S. Ruhmann and E. Tiemann The X1 ground state of Mg2 studied by Fourier-transform spectroscopy 2013 J. Chem. Phys. 138 094303.

V. V. Meshkov, A. V. Stolyarov, M. C. Heaven, C. Haugen and R. J. LeRoy Direct-potential-fit analyses yield improved empirical potentials for the ground X g + 1 state of Be2 2014 J. Chem. Phys. 140 064315.
Spectral analysis of iberyllium dimer



This page last modified 14/02/2014 and maintained by : jim.mitroy@cdu.edu.au

Return to Van der Waals home page