One active area in the theory of disperion interactions lies in prediciting dispersion interactions using density functional theory. This list largely ignores that research.
Z. Eisenschitz and F. London
Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften
1930 Z. Phys. 60 491.
First paper on dispersion forces
J. C. Slater and J. G. Kirkwood
The Van Der Waals Forces in Gases
1931 Phys. Rev. 37 682.
Does H-H and He-He
H. Margeneau
Note on the Calculation of van der Waals Forces
1931 Phys. Rev. 37 1425.
Notes that the sum rule of Thomas and Kuhn and can help to give reasonable
values of C6 provided the polarizability is known.
H. Margeneau
The Role of Quadrupole Forces in Van Der Waals Attractions
1931 Phys. Rev. 38 747.
Introduces the dipole-quadrupole and quadrupole-quadrupole terms
F. London
The general theory of molecular forces
1937 Transactions of the Faraday Society 33 8.
Early comprehensive article on the topic
J. K. Knipp
The Role of Quadrupole Forces in Van Der Waals Attractions
1938 Phys. Rev. 53 734.
The quadrupole-quadrupole 1/R5 interaction for non-S states
A. Dalgarno and J. T. Lewis
The Representation of Long Range Forces by Series Expansions I:
The Divergence of the Series II: The Complete Perturbation Calculation of Long Range Forces
1956 Proc. Phys. Soc. 69 57.
Discussion about the convergence of inverse power series in (1/R) of
the multipole expansion of the polarization (and dispesion) interaction for H.
Conclusion: the series expansion is asymptotic in nature.
P. R. Fontana
Theory of Long-Range Interatomic Forces. I. Dispersion Energies between Unexcited Atoms
1961 Phys. Rev. 123 1865.
P. R. Fontana
Moderately Long-Range Interatomic Forces
1961 Phys. Rev. 123 1871.
T. Y. Chang
Theory of Long-Range Interatomic Forces. II. First-Order Interaction Energies
in the Uncoupled Representation
1967 Rev. Mod. Phys. 39 911.
H. L. Kramer and D. R. Herschbach
Combination Rules for van der Waals Force Constants
1970 J. Chem. Phys. 53 2792.
Knowledge of polarizabilities for atoms and C6 for dimers
used to generate the dispersion parameters for heteronuclear dimers.
D. C. S. Allison, P. G. Burke and W. D. Robb
Van der Waals coefficients for atomic systems involving non-spherical atoms
1972 J. Phys. B 5 1431.
R. Ahlrichs
Convergence properties of the intermolecular force series (1/R-expansion)
1976 Theor. Chima. Acta. 41 7.
A. Koide
A new expansion for dispersion forces and its application
1976 J. Phys. B 10 3173.
Shows that the multipole expansion of the VdW interaction
has no convergence problems with a monemtum space treatment
R. W. Gentry and C. L. Geise
Long-range interactions of ions with atoms having partially filled p subshells
1977 J. Chem. Phys. 67 2355.
Not strictly dispersion, rather deals with totGiese al interaction of an
ion with an atom with a partially filled p-shell. Issues related to
spin-orbit splitting addressed.
W. C. Stwalley, Y. H. Uang and G. Pichler
Pure Long-Range Molecules
1978 Phys. Rev. Lett. 41 1164.
M. Movre and G. Pichler
Resonance interaction and self-broadening of alkali resonance lines.
I. Adiabatic potential curves
1977 J. Phys. B 10 2631
A. Koide, W. J. Meath and A. R. Allnatt
Second order charge overlap effects and damping functions for isotropic atomic and molecular interactions
1981 Chem. Phys. 58 105.
Application of the momentum space treatment to H2
M. Movre and R. Beuc
van der Waals interaction in excited alkali-metal dimers
1985 Phys. Rev. A 31 2957
B. Silvi and V. Chandrasekharan
Dispersion coefficients for atoms in different states
1983 Mol. Phys.48 1053
R. Santra and C. H. Greene
Tensorial analysis of the long-range interaction between metastable alkaline-earth-metal atoms
2003 Phys. Rev. A 67 062713.
S. M. Cybulski and T. P. Haley
New approximations for calculating dispersion coefficients
2003 J. Chem. Phys. 121 7711.
Using scaled Hartree-Fock dispersion coefficients
J. Y. Zhang and J. Mitroy
Long-range dispersion interactions I: formalism for two hetero-nuclear atoms
2007 Phys. Rev. A 76 022705.
General oscillator strength sum rules for states which are not spherically symmetric.
Results are for heteronuclear dimers.
J. Mitroy and J. Y. Zhang
Long-range dispersion interactions III: Method for two homo-nuclear atoms
2007 Phys. Rev. A 76 062703.
General oscillator strength sum rules for states which are not spherically symmetric.
Results are for homonuclear dimers.
Y. H. Zhang, L. Y. Tang, X. Z. Zhang, J. Jiang and J. Mitroy
Convergence of the multipole expansion of the polarization and dispersion interactions
2012 J. Chem. Phys. 136 174107.
Demonstrates that a wave function bounded to remain within a finite R has an absolutely
convergent multipole expansion for distances outside the bounding region.
H. Margenau Van der Waals Forces 1939 Rev. Mod. Phys. 11 1.
A. Dalgarno and W. D. Davidson
The Calculation of Van Der Waals Interactions
1966 Adv. At. Mol. Phys. A 2 1.
Discussion of sum rule methods.
A. Dalgarno
New Methods for Calculating Long-Range Intermolecular Forces,
1967 Adv. Chem. Phys. 12 143.
Discussion of sum rule methods.
T. Y. Chang
Moderately Long Range Interatomic Forces
1967 Rev. Mod. Phys. 39 911.
Long range interatomic forces. Deals with the different coupling schemes
for different energy regimes.
T. M. Miller and B. Bederson
The Calculation of Van Der Waals Interactions
1977 Adv. At. Mol. Phys. 13 1.
Predominantly a polarizability review
T. M. Miller and B. Bederson
Recent Developments in the Measurement of Static Electric Dipole Polarizabilities
2005 Adv. At. Mol. Phys. 51 343.
Predominantly a polarizability review covering results in the 1977 - 2005 time period
K. M. Jones, E. Tiesinga, P. D. Lett and P. S. Julienne
Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering
2006 Rev. Mod. Phys. 78 483
N. Bouloufa, A. Crubellier and O. Dulieu
Photoassociative molecular spectroscopy for atomic radiative lifetimes
2009 Phys. Scr. 78 014014
Paper discussing high precision measurements of atomic lifetimes. Emphasis
on photo-association measurements which give C3 coefficient
for the homonuclear systems.
J. Mitroy, M. S. Safronova and C. W. Clark
Polarizabilities of atoms and ions
2010 J. Phys. B 43 202001.
Predominantly a polarizability review
U. Hohm
Experimental static dipole-dipole polarizabilities of molecules
2013 J. Molec. Structure 1054 282.
Polarizability compilation
H. B. Casimir and D. Polder
The Influence of Retardation on the London-van der Waals Forces
1948 Phys. Rev. 73 360
M. Karplus, Kolker, H. J.
Van der Waals Forces in Atoms and Molecules
1964 J. Chem. Phys. 41 3955
Uses dynamic polarizability to generate Cn coefficients
K. T. Tang
Dynamic Polarizabilities and van der Waals Coefficients
1969 Phys. Rev. 177 108
P. Langhoff and M. Karplus
Padé Approximants for Two-and Three-Body Dipole Dispersion Interactions
1970 J. Chem. Phys. 53 233
Uses dynamic polarizability to generate Cn coefficients
P. Langhoff, R. G. Gordon and M. Karplus
Comparisons of Dispersion Force Bounding Methods with Applications to Anisotropic Interactions
1971 J. Chem. Phys. 55 2126
K. T. Tang
Upper and lower bounds of two- and three-body dipole, quadrupole, and octupole
van der Waals coefficients for hydrogen, noble gas, and alkali atom interactions
1976 Phys. Rev. 64 3063
J. S. Dahler and J. O Hirschfelder
Long Range Intermolecular Forcees
1956 J. Chem. Phys. 25 986.
Mainly deals with various cases for 3-body systems
A. Dalgarno and G. Victor
Long range three-body forces between helium and hydrogen atoms
1966 Mol. Phys. 10 333
S. A. C. McDowell, A. Kumar and W. J. Meath
On the anisotropy of the triple-dipole dispersion energy for interactions involving linear molecules
1996 Mol. Phys. 87 845
L. Y. Tang, Z. C. Yan, T. Y. Shi, J. F. Babb and J. Mitroy
The long-range non-additive dispersion interactions
for the rare gases, alkali and alkaline-earth atoms
2012 J. Chem. Phys. 136 104104.
Very extensive tabulations of the three-body coefficients are
reported in the supplementary data
J. Butka and W. J. Meath
On the evaluation of high-order interaction energies using pseudo state methods
1974 Mol. Phys. 24 1235.
Includes expressions for the 3rd and 4th order terms.
V. D. Ovsiannikov, A. V. Guilyarovski, and O. Y. Lopatko
Higher order effects in dispersion interaction of atoms
1988 Mol. Phys. 61 111.
Some 3rd and 4th order coefficients given for the hydrogen dimer.
Z. C. Yan and A. Dalgarno
Regular approach to generate van der Waals coefficients to arbitrary orders.
1999 Mol. Phys. 96 863
Calculation of third order terms up to C15
J. Mitroy and M. W. J. Bromley
The higher order Cn dispersion coefficients for the alkali metals
2005 Phys. Rev. A 71 042701.
Gives C12, C14 and C16 including
3rd and 4th order terms
V. D. Ovsiannikov and J. Mitroy
Regular approach to generate van der Waals coefficients to arbitrary orders.
2006 J.Phys.B 39 159-187.
Calculation goes up to 10th order of perturbation theory and includes
terms up to C30
M. Przybytek and B. Jeziorski
Higher dispersion coefficients for the interaction of helium atoms .
2008 Chem. Phys. Lett. 459 183. (Erratum 463 435)
Calculation goes up to 4th order of perturbation theory and includes
terms up to C16
L. Y. Tang, J. Y. Zhang, Z. C. Yan, T. Y. Shi and J. Mitroy
The third-order van der Waals interaction
2011 Phys. Rev. A 84 052502.
Treats the case where one of the atoms is not in a spherically symmetric state.
Previous treatments of 3rd-order VdW interactions have been confined to the
case where both atoms are in a spherically symmetric state.
M. J. Jamieson and G. . F. Drake and A. Dalgarno
Retarded dipole-dipole dispersion interaction potential for helium
1995 Phys. Rev. A 71 3358.
A. J. Thakkar
Higher dispersion coefficients: Accurate values for hydrogen atoms and simple estimates for other systems
1988 J. Chem. Phys. Rev. 89 2092.
D. M. Bishop and J. Pipin
Dipole, quadrupole, octupole, and dipole–octupole polarizabilities at real
and imaginary frequencies for H, He, and H2 and the dispersion-energy
coefficients for interactions between them
1993 Int. J. Quantum Chem. A 45 349.
Z. C. Yan, J. F. Babb, A. Dalgarno and G. W. F. Drake
Variational calculations of dispersion coefficients for interactions among H, He, and Li atoms
1996 Phys. Rev. A 133 104306.
Very precise calculations of C6 , C8 and C10 for all possible
combinations of the ground states for these atoms. Does not
include finite mass or relativistic effects
L. Y. Tang, J. Y. Zhang, Z. C. Yan, T. Y. Shi, J. Mitroy
Long-range dispersion coefficients for Li, Li+ and Be^+
interacting with the rare gases
2010 J. Chem. Phys. 133 104306.
J. Y Zhang, J. Mitroy Z. C. Yan, J. F. Babb, H. R. Sadeghpour and U. Schwingenschlog Long Range Interactions of excited He atoms with the alkaline earth atoms Mg, Ca and Sr 2013 J. Chem. Phys. 138 134317.
A. E. Kingston and A. Dalgarno
Van der Waals Forces for Hydrogen and the Inert Gases
1961 Proc. Phys. Soc. A 78 607
A. E. Kingston
Van der Waals Forces for the Inert Gases
1964 Phys. Rev 135 1018
A. Kumar and W. J. Meath
Pseudo-spectral dipole oscillator strengths and dipole-dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He, Ne, Ar, Kr and Xe
1985 Mol. Phys. 54 823
Pseudo-oscillator strength distributions for these systems. Only dipole transitions.
A. Kumar and W. J. Meath
Integrated dipole oscillator strengths and dipole properties for
Ne, Ar, Kr, Xe, HF, HCl, and HBr
1985 Can. J. Chem. 63 1616
Pseudo-oscillator strength distributions for these systems. Only dipole transitions.
J. M. Standard and P. R. Certain
Bounds to two- and three-body long-range interaction coefficients for S-state atoms
1985 J. Chem. Phys. 83 3002.
The C6, C8 and C10 dispersion parameters for the
noble gases, alkalis and alkaline-earth atoms. The data tabulated in this paper has
largely been superseded by later works.
A. J. Thakkar, H. Hettema and P. S. Wormer
Ab initio dispersion coefficients for interactions involving rare-gas atoms
1992 J. Chem. Phys. 97 3252.
C. Hattig and B. A. Hess
TDMP2 Calculation of Dynamic Multipole Polarizabilities and Dispersion
Coefficients of the Noble Gases Ar, Kr, Xe, and Rn
1996 J. Phys. Chem. 100 6243.
M. J. Jamieson, G. W. F. Drake and A. Dalgarno
Retarded dipole-dipole dispersion interaction potential for helium
1995 Phys. Rev. A 51 3358
J. Mitroy and M. W. J. Bromley
Dispersion coefficients for H and He interactions with alkali and alkaline-earth atoms
2003 Phys. Rev. A 68 062710.
Errata 2005 Phys. Rev. A 71 019903.
The C6 , C8 and C10 dispersion parameters are
given. All atoms in their ground states.
J. Y. Zhang and J. Mitroy
Long rang dispersion interactions II: alkali and rare gas atoms.
2007 Phys. Rev. A 76 032706.
The paper also C6, C8 and C10 dispersion parameters for the
alkalis and alkaline-earth atoms. Only ground states are considerd.
A. Derevianko, S. G. Porsev and J. F. Babb
Electric dipole polarizabilities at imaginary frequencies for the alkali-metal, alkaline-earth, and inert gas atoms
2010 At. Data. Nucl. Data Tables 96 323.
Dynamic dipole (only) polarizabilities for noble gases, alkalis and alkaline-earth.
The tabulations are done on a 50 point grid.
A. Kumar and A. J. Thakkar
Dipole oscillator strength distributions with improved high-energy behavior: Dipole
sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited
2010 J. Chem. Phys. 132 073401
Pseudo-oscillator strength distributions for these systems. Only dipole transitions.
A. Dalgarno and W. D. Davison
Long-range interactions of alkali metals
1967 Mol. Phys. 13 479
B. Bussery and M. Aubert-Frecon
Calculated long-range electrostatic and dispersion interactions of M( ns2S) with
M( ns2S) or M( np 2P) for M = Li and Na when neglecting spin—orbit effects
1984 Chem. Phys. Lett. 105 64
B. Bussery and M. Aubert-Frecon
Multipolar long-range electrostatic, dispersion, and induction energy
terms for the interactions between two identical alkali atoms Li, Na, K, Rb, and Cs
in various electronic states
1985 J. Chem. Phys. 82 3224.
B. Bussery, M. Aubert-Frecon and M. Saute
Calculated long-range ground and excited molecular
states of alkali hydride molecules
1986 Chem. Phys. 109 39
Gives C6,8,10
M. Marinescu, H. R. Sadeghpour and A. Dalagarno
Disperions coefficients for alkali-metal dimers
1994 Phys. Rev. A 49 982.
C6, C8 and C10 coefficients for all the alkali metals dimers. Highly
cited paper which does not have a seperate treatment of the oscillator
strength distributions for the core and valence electrons. This slightly
degrades the accuracy and later work by other groups should be preferred.
M. Marinescu, and A. Dalagarno
Dispersion forces and long-range electronic transition dipole moments of alkali-metal dimer excited states
1995 Phys. Rev. A 52 311.
C6, C8 and C10 coefficients for the alkali homo-nuclear dimers with
one of the atoms being in an excited state. Does not have a seperate treatment
of the oscillator strength distributions for the core and valence electrons.
This slightly degrades the accuracy and later work by other groups should be
preferred.
M. Marinescu, and A. Dalagarno
Dispersion coefficients for the nP-nP asymptote of homonuclear alkali-metal dimers
1997 Phys. Rev. A 56 4764.
C5, C6 and C8 coefficients for the alkali hetero-nuclear dimers with
both of the atoms being in an excited state. Does not have a seperate treatment
of the oscillator strength distributions for the core and valence electrons.
This slightly degrades the accuracy and later work by other groups should be
preferred.
M. Marinescu, and A. Dalagarno
Long-range potentials for two-species alkali-metal atoms s
1999 Phys. Rev. A 59 390.
C6, C8 and C10 coefficients for the alkali hetero-nuclear dimers with
one of the atoms being in an excited state. Does not have a seperate treatment
of the oscillator strength distributions for the core and valence electrons.
This slightly degrades the accuracy and later work by other groups should be
preferred.
P. Kharchenko, J. F. Babb and A. Dalgarno
Long-range interactions of sodium atoms
1997 Phys. Rev. A 55 3566
Only deals with sodium. But also gives three-body and atom-wall coefficients.
A. Derevianko, J. F. Babb and A. Dalgarno
High-precision calculations of van der Waals coefficients for heteronuclear alkali-metal dimers
2001 Phys. Rev. A 63 052704
Gives C6 for all alkali atoms from Li to Fr. Uncertainty
estimates given.
N. Geum, G. H. Jeung, A. Derevianko, R. Cote and A. Dalgarno
Interaction potentials of LiH, NaH, KH, RbH, and CsH
2001 J. Chem. Phys. 115 5984
S. G. Porsev and A. Derevianko
Accurate relativistic many-body calculations of van der
Waals coefficients C8 and C10 for alkali-metal dimers
2003 J. Chem. Phys. 119 844
J. Mitroy and M.W.J.Bromley
Semi-empirical calculation of van der Waals coefficients
for alkali and alkaline-earth atoms
2003 Phys. Rev. A 68 052714.
Errata 2005 Phys. Rev. A 71 019902.
The C6 , C8 and C10 dispersion parameters for the
alkalis and alkaline-earth atoms. Only ground states are considered.
J. Mitroy and M.W.J.Bromley
Dispersion coefficients for H and He interactions
with alkali and alkaline-earth atoms
2003 Phys. Rev. A 68 062710.
Errata 2005 Phys. Rev. A 71 019903.
Gives C6, C8 and C10 coefficients for
the alkali and alkaline-earth atoms with H and He. All
atoms in ground states.
C. Zhu, A. Dalgarno, S. G. Porsev, and A. Derevianko
Dipole polarizabilities of excited alkali-metal atoms and long-range interactions of
ground- and excited-state alkali-metal atoms with helium atoms
2004 Phys. Rev. A 70 032722
J. Y. Zhang, J. Mitroy and M. W. J. Bromley
Dispersion coefficients of the excited states of lithium atoms
2007 Phys. Rev. A 75 042509.
C6, C8 and C10 coefficients for the lithium homo-nuclear dimers.
One or both of the atoms can be in an excited state.
J. Jiang, Y. J. Cheng, and J. Mitroy
Long-range interactions between alkali and alkaline-earth atoms.
2013 J. Phys. B 46 125004.
Covers the alkali-alkaline case. Heaviest atoms considered are Rb and Sr.
One of the atoms can be in an excited state.
J. Mitroy and M.W.J.Bromley :
Semi-empirical calculation of van der Waals coefficients
for alkali and alkaline-earth atoms
2003 Phys. Rev. A 68 052714.
Errata 2005 Phys. Rev. A 71 019902.
The C6, C8 and C10 dispersion parameters for the
alkalis and alkaline-earth atoms. Only ground states are considered.
S. G. Porsev and A. Derevianko
High-accuracy calculations of dipole, quadrupole,
and octupole electric dynamic polarizabilities and van der Waals
coefficients C6, C8, and C10 for alkaline-earth atoms
2006 Journal of Experimental and Theoretical Physics 102 195.
Used Casimir-pOlder relation. Dispersion coefficients only given
for homo-nuclear dimers.
J. Mitroy and J. Y. Zhang
Long-range dispersion interactions of the low lying states of Mg with H, He, Ne, Ar, Kr and Xe
2008 Mol. Phys. 106 127-132.
J. Mitroy and J. Y. Zhang
Properties and long range interactions of the Ca atom
2008 J. Chem. Phys. 128 134305.
C6, C8 and C10 coefficients are given.
Interactions of the lowest 7 states of calcium with H, the Ca ground state
and the rare gases.
J. Mitroy and J. Y. Zhang
Dispersion and polarization interactions of the strontium atom
2010 Mol. Phys. 108 1999-2006.
C6, C8 and C10 coefficients are given.
Interactions of the lowest 3 states of strontium with H, the Sr ground state
and the rare gases.
J. Jiang, Y. J. Cheng, and J. Mitroy
Long-range interactions between alkali and alkaline-earth atoms.
2013 J. Phys. B 46 125004.
Dispersion coefficients involving one alkali atom and one alkaline-earth
atom.Either of the atoms can be in an excited state.
S. Jonsell, A Saenz, P. Froelich, R. C. Forrey, R. Cote, and A. Dalgarno
Dipole Polarizability of the Neutral Carbon Atom and the Dipole-Dipole Interaction between Carbon Atoms
1972 Phys. Rev. A 2 516.
Gives C6 for Carbon dimer
V. Staemmler and R. Jaquet
CEPA calculations of potential energy surfaces for open-shell systems..
III. Van der Waals interaction between O( 3P) and He( 1S)
1985 Chem. Phys. 92 141
P. K. Mukherjee and Kimio Ohno
Dynamic polarizabilities and Rydberg states of silicon, phosphorous, and sulfur
1988 Phys. Rev. A40 1753.
M. Rerat, B. Bussery and M. Frecon,
Dipole Polarizabilities of Li, C, and O and Long-Range Coefficients for
Various Molecular States of Li 2, CO, and O 2
1997 J. Molec. Spectrosc. 182 260
\
C. Pouchon, M. Rerat and G. Maroulis
Frequency-dependent dipole and quadrupole polarizabilities for the ground ? state of boron
1997 J. Phys. B 30 167.
\
S. Jonsell, A Saenz, P. Froelich, R. C. Forrey, R. Côté, and A. Dalgarno
Long-range interactions between two 2s excited hydrogen atoms
2002 Phys. Rev. A 65 042501
\
J. Mitroy and M. W. J.Bromley
Van der Waals coefficients for Ps-atom interactions
2003 Phys. Rev. A 68 035201.
P. Zhang, V. Kharchenko and A. Dalgarno
Thermalization of Suprathermal N(4S) atoms in He and Ar gases.
2006 Mol. Phys. 105 1487.
X. Chu, A. Dalgarno and G. C. Groenenboom
Dynamic polarizabilities of rare-earth-metal atoms and dispersion
coefficients for their interaction with helium atoms
2005 Phys. Rev. A 72 032703.
X. Chu, A. Dalgarno and G. C. Groenenboom
Dynamic polarizabilities of rare-earth-metal atoms and dispersion
coefficients for their interaction with helium atoms
2006 Mol. Phys. 105 1487.
J. S. Cohen and A. Derevianko
Long-range forces between two excited mercury atoms and associative ionization
2007 Phys. Rev. A 76 012706
J. Y. Zhang, J. Mitroy, H. R. Sadeghpour and M. W. J Bromley
Long range interactions of the copper and silver atoms with helium and the rare gases
2008 Phys. Rev. A 78 062710.
Coefficients for the low lying states of Copper and Silver with hydrogen and the rare gases
O. Zatsarinny, K. Bartschat, J. Y. Zhang and J. Mitroy
Long range interactions of the chlorine atom
2009 Mol. Phys. 107 2387-2393.
Coefficients given for the clorine dimer and the interactions of clorine
with the rare gases and hydrogen.
O. Zatsarinny, K. Bartschat, J. Y. Zhang and J. Mitroy
Multipole polarizabilities and long range interactions of the fluorine atom
2009 J. Chem. Phys. 130 124310.
Coefficients given for the fluorine dimer and the interactions of fluorine
with the rare gases and hydrogen.
L. W. Qiao, P. Li and K. T. Tang
Dynamic polarizabilities of Zn and Cd and dispersion coefficients involving group 12 atoms
2012 J. Chem. Phys. 137 084309.
Dynamic dipole polarizabilities for Zn and Cd.
M. S. Safronova, S. G. Porsev and C. W. Clark
Ytterbium in Quantum Gases and Atomic Clocks: van der Waals Interactions
and Blackbody Shifts
2012 Phys. Rev. Lett. 109 230802.
Used Casimir-Polder relation. Gives C6, for dimer, and
alkali and alkaline-earth combinations.
S. G. Porsev, M. S. Safronova, A. Derevianko and C. W. Clark
Relativistic many-body calculations of van der Waals coefficients for
Yb-Li and Yb-Rb dimers
2012 Phys. Rev. A .
Used Casimir-Polder relation. Gives C6 and C8.
Coefficients also given for the first excited state, including the
triplet of each dimer.
J. Mitroy, J. Y. Zhang and M. W. J. Bromley
Long-range interactions of the Sr+ ion
2008 Phys. Rev. A 77 032512.
Dispersion coeffiecent for the lowest 4-5 states of the strontium ion
with the rare gases.
A. Dalgarno, I. H. Morrison and R. M. Pengelly
Long-range interactions between atoms and molecules
1967 Int. J. Quantum Chem. 1 161
Used pseudo-oscillator strengths for He, Ne, A, Kr, Xe, H2, N2 and
CH4. Does C6 and C9 .
G. D. Zeiss and W. J. Meath
Dispersion energy constants C6(A, B), dipole oscillator strength
sums and refractivities for Li, N, O, H2, N2, O2,
NH3, H2O, NO and N2O
1977 Mol. Phys. 33 1155
Used pseudo-oscillator strengths to get C6 .
M. S. Boweres, K. T. Tang and P. J. Toennies
The anisotropic potentials of He-N2, Ne-N2, and Ar-N2.
1988 J. Chem. Phys. 88 5465
W. J. Meath and A. Kumar
Reliable isotropic and anisotropic dipolar dispersion energies, evaluated using constrained dipole oscillator
strength techniques, with application to interactions involving H2, N2, and the rare gases
1990 Int. J. Quant, Chem. 38 501
Pseudo-oscillator strength distributions for these systems. Only dipole transitions.
H. Hettema, P. S. Wormer and A. J. Thakkar
Intramolecular bond length dependence of the anisotropic dispersion coefficients for
interactions of rare gas atoms with N2, CO, Cl2, HCl and HBr
1993 Mol. Phys. 80 533
J. F. Babb
Effective Oscillator Strengths and Transition Energies for the Hydrogen Molecular Ion.
1994 Mol. Phys. 81 17
A. Kumar and W. J. Meath
Reliable isotropic and anisotropic dipole properties, and dipolar dispersion energy coefficients,
for CO evaluated using constrained dipole oscillator strength techniques
1994 Chem. Phys. 189 467.
Dipole pseudo-oscillator strength distributions for CO.
A. Kumar, W. J. Meath, P. Bundgen and A. T. Thakkar
Reliable anisotropic dipole properties, and dispersion energy coefficients,
for O2 evaluated using constrained dipole oscillator strength techniques
1996 J. Chem. Phys. 105 4927
Dipole pseudo-oscillator strength distributions for O2.
F. Visser, P. E. S. Wormer and W. P. J. H. Jacobs
The nonempirical calculation of second-order molecular properties by means
of effective states. III. Correlated dynamic polarizabilities and dispersion
coefficients for He, Ne, H2, N2, and O2
1985 J. Chem. Phys. 82 3753
T. N. Olney, N. M. Cann, G. Cooper and C. Brion
Absolute scale determination for photoabsorption spectra and the
calculation of molecular properties using dipole sum-rules.
1997 Chem. Phys. 223 59
Dipole oscillator strength distributions for many systems
C. Zhu, A. Dalgarno and A. Derevianko
van der Waals interactions between molecular hydrogen and alkali-metal atoms
2002 Phys. Rev. A 65 034708
D. M. Bishop and L. M. Cheng
Dynamic dipole polarizability of H2 and HeH+
1980 J. Chem. Phys. 72 5125
R. J. LeRoy and R. B. Bernstein
Dissociation energies and long-range potentials of diatomic molecules from vibrational spacings: The halogens
1971 J. Molec. Spect. 37 109
The importance of knowing the dispersion coefficients when trying
to determine dissociation energies
J. Comparat
Improved LeRoy-Bernstein near-dissociation expansion formula, and prospect for photoassociation spectroscopy
2004 J. Chem. Phys. 120 1318
The importance of knowing the dispersion coefficients when trying
to determine dissociation energies
R. J. LeRoy and Y. Huang and C. Jary
An accurate analytic potential function for ground-state N2 from
a direct-potential-fit analysis of spectroscopic data
2006 J. Chem. Phys. 125 164310
Gives C6 and C8
S. Ray. J. D. Lyons and T. P. Das
Hyperfine Pressure Shift and van der Waals Interaction. IV. Hydrogen-Helium System
1968 Phys. Rev. A 174 104
W. D. Davidson
Long-range interactions and the hyperfine pressure shift: Hydrogen in an inert gas
1969 J. Phys. B 2 1110
B. K. Rao. D. Ikenberry and T. P. Das
Hyperfine Pressure Shift and van der Waals Interaction. IV. Hydrogen-Rare-Gas Systems
1970 Phys. Rev. A 2 1411
E. Bernabeu and J. M. Alvarez
Shift and broadening of hyperfine components of the first doublet of cesium perturbed by foreign gases
1980 Phys. Rev. A 22 2060
W. G. Greenwood and K. T. Tang
Dipole, quadrupole, and octupole terms in the long-range hyperfine
frequency shift for hydrogen in the presence of inert gases
1987 J. Chem. Phys. 86 3539
A. Andalkar and R. B. Warrington
High-resolution measurement of the pressure broadening and shift
of the Cs D1 and D2 lines by N2 and He buffer gases
2002 Phys. Rev. A 65 032708
R. J. LeRoy and R. B. Bernstein
Dissociation Energy and Long.Range Potential of Diatomic Molecules from Vibrational Spacings of Higher Levels
1970 J. Chem. Phys. 52 3869.
The importance of knowing the dispersion coefficients when trying
to determine dissociation energies
R. J. LeRoy and R. B. Bernstein
Dissociation energies of diatomic moleculles from vibrational spacings of higher levels: application to the halogens
1970 Chem. Phys. Lett. 5 42.
The importance of knowing the dispersion coefficients when trying
to determine dissociation energies
W. C. Stwalley, Y. H. Uang and G. Pichler
Pure Long-Range Molecules
1978 Phys. Rev. Lett. 41 1164.
W. T. Zemke and W. C. Stawlley
Analysis of long-range dispersion and exchange interactions of two lithium atoms
1993 J. Phys. Chem. 97 2053.
Spectral analysis of data for Lithium dimer
B. Ji, C. C. Tsai, L. Li, T. J. Whang., A. M. Lyyra., H. Wang., J. T. Bahns., W. C. Stwalley and R. J. LeRoy
Determination of the long-range potential and dissociation energy of the 1 3Delta g state of Na2
1995 J. Chem. Phys. 103 7240.
W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. Stoof and R. G. Hulet
Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium
1995 Phys. Rev. A 51 R871.
H. Wang, P. L. Gould, W. C. Stwalley
Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. I. The 0g- pure
long-range state and the long-range potential constants
1997 J. Chem. Phys. 106 7889.
J.Y. Seto, R.J. Le Roy, J. Verges and C. Amiot,
Direct Potential Fit Analysis of the X-State of Rb2: Nothing Else Will Do
2000 J. Chem. Phys. Chem. A 113 3067.
Spectral analysis of this molecule
C. Cheng, V. Vuletic, A. J. Kerman and S. Chu
High Resolution Feshbach Spectroscopy of Cesium
2000 Phys. Rev. Lett. 85 2717.
Potential parameters for Cesium
E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen and B. J. Verhaar
Interisotope Determination of Ultracold Rubidium Interactions from Three High-Precision Experiments
2002 Phys. Rev. Lett 88 093201
S. B. Nagel, P. G. Mickelson, A. D. Saenz, Y. N. Martinez, Y. C. Chen, T. C. Killian, O. Pellegrini, R. Cote.
Photoassociative Spectroscopy at Long Range in Ultracold Strontium
2005 Phys. Rev. Lett. 94 083004.
F. Vogt, C. Grain, T. Nazarova, U. Sterr, F. Riehle, C. Lisdat and E. Tiemann
Determination of the calcium ground state scattering length by photoassociation spectroscopy
at large detunings
2007 Eur. Phys. J. D 44 73.
A. Shayesteh, R. D. E. Henderson, R. J. Le Roy and P. F. Bernath
Ground State Potential Energy Curve and Dissociation Energy of MgH
2007 J. Phys. Chem. A 111 124959.
Spectral analysis of this molecule
R. J. Le Roy, N. S. Dattani, J. A. Coxon, A. J. Ross, P. Crozet and C. Linton
Accurate analytic potentials for Li2(X 1g+) and Li2(A 1+) from 2 to 90 A, and the radiative
lifetime of Li(2p)
2009 J. Chem. Phys. 131 204309.
Spectral analysis of lithium dimer
N. S. Dattani and R. J. Le Roy
A DPF Data Analysis Yields Acurate Analytic Potentials for Li2(a 3Sigmau+) and
Li2(1 3Sigmag+) That Incorporate 3-State Mixing Near the 1 3Sigmag+)-state Asymptote
2011 J. Molec. Spectros. 267 199.
Spectral analysis of lithium dimer
H. Knockel, S. Ruhmann and E. Tiemann
The X1 ground state of Mg2 studied by Fourier-transform spectroscopy
2013 J. Chem. Phys. 138 094303.
V. V. Meshkov, A. V. Stolyarov, M. C. Heaven, C. Haugen and R. J. LeRoy
Direct-potential-fit analyses yield improved empirical potentials for the ground
X g + 1 state of Be2
2014 J. Chem. Phys. 140 064315.
Spectral analysis of iberyllium dimer
This page last modified 14/02/2014 and maintained by :
jim.mitroy@cdu.edu.au
Return to
Van der Waals home page